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Abstract

A point x # § belonging to a convex cone K wlth vertex g
in a locally convex linear topological space X 1s called a

quasi-interior point (QI-point) of K if the linear extension

of the set K N (x - K) is dense in X. The set Kq of all
quasl-interior polints of K 1s called the quasi-interior of K.

Many properties of QI-points and of cones with non-void quasi-
interlors are determined. Among the results established are
the following.

If K has a non-void interior k° then Kq = k°. Examples
are glven to show that a cone with void interior may have a
non-void quasi-interior.

Let K and K' be cones with non-void quasi-interiors Kq

and K'q such that Kq N K'q = @g. If H is a hyperplane

separating K and K' then H strictly separates Kq and K'q.
Each QI-point of K is a non-support point of K.
If Kq # @ and C is a convex set with non-vold.interior c®
such that ¢° n Kq = @ then there exists a hyperplane H
separating C and K and strictly separating ¢® and Kq.
If K n (-K) = {8}, Ky # # and x € K, x £ K5 X # 6 there
exists a subset H of X maximal with respect to the properties:
(1) H 1s a proper linear subspace of X, (i1) x, € H, (iii)
HN Kq = ¢. Furthermore, if S1 = H + Kq and 82 =H - Kq we
have HN 8 = HN S, =8, NS, =@; HU S, USy, =X;
KcHU Sl; Kq c Sl; and Xq € Sl and y € H imply an x, € 82
such that y = %(xl + x2). It is conjectured that H is

necessarily elther a hyperplane or is dense in X.




1. Introduction.

In May 1963 Professor R. E. Fullerton died at the age of
47 as the result of injuries received in an automnbile
accldent while on a lectﬁre tour of Europe. A mathematical
inventory of his effects produced the beginnings of several
papers. Although the notes found were, for the most part,
incomplete and fragmentary, it was decided that an attempt
should be made to complete and publish the work so tragically
interrupted. The writer, being a former student of Fullerton
and having maintained close professional contact with him,
was selected to make this attempt. The paper which will
result from this report will be the first of several to be
written in Fullerton's specialty, namely, the application of
geometrical techniques to Functional Analysis.

The notion of a quasi-interior point of a cone in a
linear topological space was devised by Fullerton in a
research report [4]; His purpose in introducing this concept
and discussing several properties possessed by cones with
quasi-interior points was to lay a foundation upon which a
realistic generalization of positive operator theory could be
based. Of particular interest were the results of Krein and
Rutman [8] concerning the spectral theory of linear operators
leaving invariant a cone 1n a Banach space. These results
required that the positive cone have a non-vold interior and

therefore were not applicable in many interesting function
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spaces. (For example, the positive cone in an infinite
dimensional L-space has no interior points. c¢.f. [2].) An
actual application of the quasi-lnterilor point concept to
extending some of the Krein and Rutman results was subse-
quently carried out by H. Schaefer [9] who arrived at the
technique independently.

The research interest of this writer has, in the past
few years, been centered in the theory of infinite programming
in linear spaces. His attention was recently once again
focused upon the quasi-interior point concept when, in the
course of attempting to extend certain results in the use of
Iagrangian saddle-points for non-linear programming, a need
was found for results concerning separation and support
properties of cones with vold interiors. The principal
results 1n this report involve such properties of cones with
non-void quasi-interiors but having no interior points.
Fullerton's original investigations concerning quasi-interior
points are included in this report for the sake of complete-
ness and because the report [4] in which they first appeared
was never published and 1s now no longer accessible. A few
of these basic results can be found also in [10].

The writer feels obllged to make a comment concerning
the role of technical reports in general and this report in
particular. He believes that a fechnical report serves at
least two very useful purposes. The first 1s in 1ts role as

a pre-print of a future publication, making available to the



interested reader material which will ordinarily not appear

in published form for many months and yet, in a format to
which reference can be made by workers wishlng to make use

of the results. The second is the possibility of including
many detalls and insights which, of necessity, must be

omitted from the published version, yet which can be extremely

helpful to the reader.

2. Basic definitions and notation.

Included in this section are the definitions and nota-
tion which will be used throughout the remainder of the
report without further reference.

The underlying space in all of the discussions will be a

locally convex real linear topological space, always denoted

by X. That 1s, X is a real linear space with elements
X, ¥, 2, ... and scalars a, B, Yg ... belonging to the real
number system R, together with a topology in which the opefa—
tions of addition (+) and scalar multiplication (-) are
continuous from X x X to X and R x X to X, respectively.
Furthermore, this topology is such that the family of convex
neighborhoods of the zero element (denoted by 8 to distinguish
it from the scalar O and thelempty set @) forms a local base -
i.e. each neighborhood of § contains a convex nelghborhood of
8. R 1tself is always assumed to possess the usual topology.
It will be clear to the reader that many of the results

to follow will be valid in linear spaces with considerably



weaker topological properties. Indeed, many of the results,
being purely algebraic, require no topology at all. The
reason for requiring that X be a locally convex space is one
of economy and the proofs themselves will indicate to what
extent the topological conditions can be relaxed.

The line segment Joining points x and y in X is denoted

by [x, y] and defined by [x, y] = {z : z =ax + (1 - a)y,

It

0 sa < 1}. We shall also use the notations (x, y)

{z:z=0ax+ (1l -a)y, 0O<a<l}, [x,¥5) ={z: 2 =o0ax +

(1 -a)y, 0OCCas1}, and (x, yl ={z : z =ax + (1 - a)y,
0 <a< 1}. The line in X determined by points x and y 1is
denoted by L(y, x) and defined by L(y, x) = {z : z =
ax + (1L - a)y, a € R}. The ray, or half-line from y through
x is R(y, x) ={z: z=0ax + (1L - a)y, a 2 0}.

A set C in X is convex 1f for any pair of elements
X, ¥ in C it follows that [x, y] ¢ C. The symbol K will

always be used to denote a convex cone with vertex 6 in X.

That is, K is a subset of X such that K + K € K and aK c K
for alla 2 0. (By A+Bwemean {x +y : x € A, y € B} and
by aA we mean {ax : x € A}.)

For a subset A of X, [A] denotes the linear extension

of A and is the set of all finite linear combinations of
elements in A. As 1s well known, [A] is the smallest linear
subspace containing A. It 1s easily seen that 1f K is a con-
vex cone in X then the statements K - K = X and [K] = X are

equivalent. A subset A will be sald to generate X if [A] is



dense in X -i.e. if X is the closure of [A].
A variety is a translate of a linear subspace. By a

hyperplane we mean a closed maximal proper linear subspace

of X. That 1s, H is a hyperplane if H 1s a linear subspace
of X, H 1ls properly contalned in no proper linear subspace of
X, and H is closed. It is well known that H is a hyperplane
in X if and only if, for some x € X, x £ H, X = H + Rx.

A° and & wlll, as 1s customary, denote respectively, the
interior and closure of the set A.

The notation A~AsB is used to denote {x : x € A, x £ B}
and is to be distinguished from the notation A - B =

{x -y : x €A, y €B}.

3. Quasi-interlor points of cones. Basic properties.

3.1 Definition. A point x € K, x # 6§ 1s called a

quasi-interior point (QI-point) of K if the set P, =KN (x-K)

generates X. The set of all QI-points of K will be denoted

by Kq and 1s called the quasi-interior of K. If x € K and

x g Kq, X is called a quasi-boundary point of K. The set of

all quasi-boundary points of K is called the quasi-boundary

of K and is denoted by Kb' That 1s Kb = Kf\JKq.

3.2 Lemma. (a) » >0 = Py = AP
(b) u € P, = P, € P,.

(¢c) y€x+K=>P cP

i

v
Proof: Suppose y € Px and A > 0. Then y € K hence

Ay € K. Also y € x - Ksoy =X - v where v € K hence




Ay = AX = AV € AX - K. Thus Ay € P)\x and XPX c PXX'

Conversely, suppose y € P, _, » > 0. Then y € K and

AX
Yy E€EAX ~Ksoy=2Ax -wwlth w € K. It follows that

A(x - %w) hence %y =x - %w € x - K and %y € P, 80

y

y € AP, Thus P, c AP, and (a) has been proved. If u € P,

X
thenu € Kand u = x - \4 with vy € K. Suppose w € Pu‘ Then
weé€Kandw=u- v, with Vo, € K. Consequently w =

(x = vq) = vy =x - (vi + vp) € x - K 80 P, € P, and (b)
holds. Finally, to prove (c¢) suppose y € x + K. Then

Yy =X + uwhere u € K. If we P thenw eKand w=1x -v

where v ¢ K. But theny =x+u = (w+ V) +u =w+ (v + u)

sow=y - (v+u) €EXn (y -K) = Py. Thus P, c P,. The
lemma has been proved.,
3.3 Lemma. If C 1s a non-trivial convex set containing

8 then each element of [C] lies on a line determined by two
points of C.

Proof: 8Suppose y € [C]. Then y = 22_1 Gy Xy where for
1i=1,2, ..., n, Xy € C and di € R. If all the a, are
zero then y = § € C and for any x € C, x ¥ 6, y 1lies on the
line L(6, x). Assume therefore that ai'#'o for L =1, 2,..., n.
If the a, are all positive, let A = £, @y > O and let
¥, = %2?=1 o, X,. Since C is convex, y; € C and y = Ay, lies
on the line L(e, ¥1). If all the o, are negative, let A =
22=1 (-a;) > 0 and ¥y ='%22=1 (-ai) X, Then y, € C and
y = -\y, again lies on L(e, ¥1). FPFinally assume that some



of the a, are positive and some are negative and separate

i
the positive and negative coefficients. That 1is, write

y = 2?=1 aij XiJ - 2£=1 (-aik) xik where aij > 0 for
J=1,2, ..., mand aik 0O fork=1, 2, ..., r with
n=m+r. Let i = Z?=l aiJ > 0 and A, = z;=1 (:aik) > 0.
Setting y, = %IZ?=1 aiJ xij and y, = %;z£=1 (-aik) iik we
have y1 € C, N € Cand y = lel - K2y2' If kl = 1 then,

. ; 1
since xe > 0, i—%-x— < 1 so0, setting yi = i—:figyl we have

i A5 i ,
yi = E‘i‘x;yl + T—;—TE g €ECandy = (1 + kz)yl - k2y2hwnence
y lles on the line L(yi, y2) determined by the points

¥is Y2 ?elonging to C. If Ay #£ 1 let ¥ = I:%gxzye and

yi = ;I:lxgyl. Then y = A\ ¥y; + (1 - kl)yé = (1 + kg)yi - Ao¥s-
If ;—:Txg'z 1 ghep Xlx: 1l + x2 and xl -12 kz > 0 so

ﬁs 1 and y} =.T1_‘_Ty2 €C. Theny = Ay, + (1 - 2)v}
lies on the line L(yl, yé) determined by two points of C.

If T;éixz-< 1 then yi =71 :lke 1 €Csoy=(1+ xa)yi - A2y2

lies on L(yi, y2) determined by two points of C. 1In every

case, therefore, the lemma's concluslion has been verified.

3.4 Lemma. If y € [PxJ then there exist points u and v
in P_ N L(y, 3) such that x =u + v. That is, £ 1s the mid-
point of a segment [u, v] € P_ N L(y, %).

Proof: Clearly Px is convex being the intersection of
the convex sets K and x - K. Thus, by Lemma 3.3, if y € [P ],
y lies on L(w, 2z) with w, z, € P,. From the definition of P,

clearly x - w and x - z also belong to Px' Suppose first



that y € [w, z]. Then, because P, 1s convex, y¢ P, and £ 1s

N

the midpoint of the segment [u, v] where u = x ¢ Px and
V=x-y€P . Now suppose that y € [w, z]. Then, by
interchanging w and z if necessary, y = yw + (1 - y)z for

some real scalar y < 0. By an elementary calculation,

Y -

1.z Y =Y - —_ LY
V= T oayx - 2) + 70+ (L - T THy(x - w) + 75520

Setting u = Tl::§¥(x -z) + T‘EXQTW and v = I—Elgv(x - W) +

1 - Y : v X
T_:_EV% we seelthat u and v belong to Px’ v € L(u, v) and 5
is the midpoint of [u, v].

The pictorial description of the situation described in
Lemma 3.4 is: y

3.5 Definition. If M is a subset of X a point x in M

is called a directionally-interior point (DI-point), (or

internal point, radial point, core point) of M if for each

Yy €M, ¥y # x there is a z # x such that [x, z] ¢ [x, y] n M.
Equivalently, x 1s directionally-interior point of M 1if,

glven any line L 1n X through x there exist points y and 2z

in L N M such that x € (y, z) ¢ M. The set of all directionally
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interior points of M 1s called the directional-interior (also

radial kernel or core) of M and will be denoted by Md'

3.6 Corollary. [P ] =X if and only if % is
directionally-interior to Px'
Proof: This follows immediately from Definition 3.5

and Lemma 3.4.

3.7 Theorem. (a) If x € K° then [P,] =X.
(b) If K is closed, X is of the second
category and [PX] = X, then x € K°.

Proof: Suppose x € K°. Then

o

€ X% and £ € (x - K)°.
Let N' be an open set such that g € N' ¢ K and let N" be an
open set such that £ € N" ¢ x - K. Then N = N' n N" is an

open set such that % €Nc P,. It is a well known result

that if P_ contains an open set, [P ] = X. Thus, (a) is

proved. Suppose [PXJ = X. By Corollary 3.6, %-13 directionally
interior to Px. If X 1s closed so 1is Px and trivially Px is

a convex Balre set. By a theorem of Klee [6], if X is of

the second category, the directional-interior of Px is a

subset of its interior. Silnce % is interior to Px’ clearly,

5 € K°,

3.8 Example. The following example shows that the
category assumption in Theorem 3.7 (b) is necessary. The
detalls of the verification may be found in (3].

Let S denote the real linear space whose elements are
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all real sequences with at most a finite number of non-zero
l_}m

o1 i=1"
X 1s defined by the equation X = S + Rx_. If x = {gi} is

coordinates. Let X, denote the sequence { The space
any element of X define || x || = Z§=1 | g, |. Let K be the
set of .21l points x = {g,} in X such that, for all 1, £, 2 O.
Then X 1s a normed linear space of the first category in
itself, K is a closed convex cone in X, K° = @ and yet

[PXO] = X.

3.9 Theorem. (a) K° ¢ Ky
(b} If K° # ¢ then K, © K°.

Proof: If K° = g trivially K°® < Kq- If K° # ¢ and
X € KO, by Theorem 3.7( {w), {PX] = X so, clearly, PX
generates X and x € Kq. Thus, (a) has been proved. To prove
(b) suppose that x 1s any element of Kq and y is any element
of Ko. Since y € KO there 1s an open set Ny such that
y € Ny < K. Since x € K, [P*J is dense in X and there
exists a point y' € [Px] n Ny. Let N& be an open set such
that y' € N& c Ny. By Lemma 3.4 the line L(y', %) contains
a point y" in P, such that y" € (%@ v'), say y" = vy' + (l-y)%
with 0 < y < 1. If y" is a multiple of x, so 1s y' and hence,
since y' € K°, so is x. If y" 1s not a multiple of x then
8, x and y" determine a two dimensional subspace E of X.
Consider the rays R(6, y') = {ay' : @ 2 0} and R(x, y") =

{Bx + (1 - B)y P B s 1}.
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where, since z = ay' = fx + (1 - 8)y"” and y" = yy' + (1 - y)&
we have ay' = Bx + (1 - a)(yy' + (1 - Y)%) =[B + Ll:xlil:ﬂlﬂx +
(1 ~ B)yy'. Since x and y' are independent, B + (1'Y£(1'B) = 0
= (1 - =Y =1 - 2L
and o = (l2 B)Y. Solving for B glves B %—;—I-and Q = Y+’
Thus z = Q‘%TEV'- The open set N, = vai_iNy‘ contains z and

is contalned in K and, hence, 2z 18 interior to K. Also,
since R(6, y') « K and R(x, y") € x - K (to see this note
that x - R(x, y") = {x - [Bx + (1 ~B)y") +t B =1} =

{(1 - p)(x+y") + Bs1}cK) we have z € KN (x - K) = P,.
Since Px is symmetric with respect to %, x -2 € Px 80

X - 2 € K and, 1in particular, x - 2 + Nz c X. The set

%ﬁ(x - z) + N,} 18 an open set contained in K and contains %w
(To see that this set contains %-we note that z € N, so

éz € %Nz and % € %x - éz + %Nz. Thus, g-is interior to K

and, consequently, X € x°.

3.10 Corollary. If K° # ¢ then K° = Ky
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3.11 Corollary. If K* # ¢ and x € L then P, has a

non-void interior.

3.12 Theoren. A necessary and sufficient condition
that x € Kq is that for any y € X and any open set N con-
taining y there exists a line L with L n N # & such that x is
interior to the segment L N K relative to L.

Proof: Iet z be any point of X and let Nz be any open
set containing z. ILet y = 2z and Ny = 2NZ. There exists a
point y!' € Ny such that the line L(y', x) 1s such that
x € (u, v) where [u, v] c L(y', x) N K. Then %y' € Ny and
vE', ) =3, x). e @ Peanad P L', % n k.
Thus, if x has the above property, so does %u It %-is

interior to L N K then, by the symmetry of Px with respect to

X X
2’ 2

If y € X, y € N, and 1f there exists a line L with %-1nterior

is interior to L N (x - K) and hence interior to L N P,.

to L N P, and with L N Ny # ¢, [P,] is dense in X and x 18 a
QI-point.

Conversely, let x be any QI-point of K. Assume that for
some y € X there exists a neilghborhood Ny such that any line L
through %-with L NN, # ¢ does not have %-interior to L n K.
By symmetry we have L N Px = {gﬂ for all such lines L. Since
x € Kq there must exist a point z € Nylwith z € [Px]. By
Lemma 3.4, z lies on a line L' through %-such that L' N P,

contains %-as an interior point of the segment. This contra-

diction completes the proof.
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3.13 Theoren. If K 1s closed and X is of the second
category then x € LA ¢ k° imply X~~[P.] 1s dense in X,

Proof: Suppose X/\/[Px] is not dense in X. Then there
exists a y € X and an open set N such that y € N ¢ [Px].
This implies, that [PX] = X and hence, by Theorem 3.7 (b),

X € KO, a contradiction. Thus, xfﬂu[Px] is dense in X and

[PX] and Xr\z[PX] are complementary dense subsets of X.

3.14 Theorem. (a) K, is a convex subset of K.
b + .
(v) K, + K< Ky
(c) Ky = U {x +K: x¢€ Ky}
(d) K, U {6} 1s a convex cone.
(e) K - K =X and Kq # ¢ imply
Kq - Kq = X.
Proof: If Ky = @, (a) holds trivially. Suppose
X, ¥y € Kq and let z =ax + (1 - a)y, 0<a < 1. It may be

assumed without loss of generality that a s %. Since

z - ax = (1 - a)y and therefore z - ax = u € K we have
ax =2 - u € z - K and, since %K = K it follows that
x € éz - K. Also setting v =ax + (1 - a)y - ay = ax + (1-2a)y

thena >0, 1 - 2a 2 0 and, since x, y € K so is v € K. Thus,
ay =2 -V € z - Kand y € éz - K. This implies that X and y
o 1 -
belong to K N (az -K) = Pz/d. By Lemma 3.2 (b), x € Pz/a
implies Px c Pz/d and since [Px] is dense in X, so is [Pz/d]'
( - L _ ord — ol
By Lemma 3.2 (a), PZ/d = 5P, so [Pz] = a[aPZ] = atrz/a] is

dense in X and z € Kq. Thus Kq is convex and (a) is verified.
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If vy € x + K then P, C Py, by Lemma 3.2, so if [Px] is
dense in X so is [Py]. Thus, (b) holds.

(c) follows immediately from (b).

To prove (d) we note that, from (b) 1t follows trivially
that Kq + Kq c Kq. That aKq c Kq for a > 0 follows from
Lemma 3.2 (a). Thus,Kq U {8} is a convex cone.

Finally, suppose K - K = X. Then, for any x € X, X = y=-z2
with y, z € K. ILet u € Ky - Then, by part (b), y +u, z + u €

Ky 80 x = (v +u) - (z +u) € Ky - Kq» and (e) is proved.

3.15 Theorem. If [u, v] € K and (u, v) n Kq # ¢ then

(u, v) Ky

Proof: Suppose z € (u, v) N Kq and let x be any point
in (u, v). There exists a y € (u, v) and a real number
a, 0 <a <1 such that x =az + (1 - a)y. az =x - (l-a)y €

x-K‘soze(%X—K)ﬂK=P By Lemma 3.2 (b), P, € P,

x/a°
and, since [PZ] is dense in X so 1is [Px/d] and, hence, [Px]

is dense in X. Thus x € Kq. Sirfte x was any point in

(u, v), (u, v) Kq.

3.16 Theorem. If Kq # @ then K ¢ K;.

Proof: Suppose that L # @ but that K ¢ Kg. Then there
exlsts an x € K such that x ﬂ KE and, hence, there exists an
open set N containing x such that N N Kq = @. Let y be any
element in Kq and let U =N - x. U 1is an open set containing

® and there is an open set V such that § € Vc U with V
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absorbing (i.e. V 1s such that to each z € X corresponds an
e>0with pz € Vif 0 < | B | s €). 1In particular, if

v =y - X there exists a Boo 0 < ﬁo < 1 such that B,V =

By - BoX €EVcUsoBY-Bx€N-xorBy+ (1 - ﬁo)x € N.
Let z = By + (1 - Bo)x. Then z € N n (x, y). Since

NNK, = g, z £ Ky Consider the rays R(8, x) and R(6, z).
Now R(6, x) +y = {y + Ax : » 2 0} and R(8, z) = {A(B ¥ +
(1.4 ﬁo)x) : A 2 0}]. It is easily seen that the element
w=y+ =Py %—O(Boy # (1 - B )x) is the point of

Bo
intersection of the rays R(8, x) + y and R(8, z).

R(B, X) + ¥

R(8, z)

y

1 -
Clearlyu~y=i-—55-’3i)-xexsoyexn(u—K)=Pu. By

Lemma 3.2 (b), P_c P, so, since y €K, [Pu] is dense in X

y q
and u € Kq. But z = B u and B, > O so, by Theorem 3.14 (4),

z € Kq. This contradiction completes the proof.

3.17 Corollary. If K is closed and Kq # @ then

K = Kq.

3.18 Theorem. If x € Kq and y € K, then x, y) © Kq.
Proof: Suppose z € (x, y). Then z = px + (1 - B)y with
0 < B<1l. As in the proof of Theorem 3.16, the point

u =X + il_ﬁ_ély = %(ﬁx + (1 - B)y) is common to R(6,y) + ¥
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and R(8, z) and it follows as before, that z € Ky

3.19 Theorem. Let x €K, x £K . If y £ [P] and
z € [PXJ and if H is the two dimensilonal variety containing
%3 ¥y and z, then either H N P, = R(6, %) or HN P, is a
closed segment on L(z, %) with midpoint %.

Proof: Since y &£ [PXJ, L(y,vg) and L(z, %) intersect at
%-but are not coincident, hence determine the two dimensional
variety H. Elther § € H (in which case H is a subspace and
clearly contains R(8, g)) or § £ H and L(z, %0 n P, contains
a closed segment s with midpoint % (by Lemma 3.4). Thus if
6 €H, R(6, 3) cHN P _and if § £ H, s c HN P,. Suppose,
in the first case that 8 € H, yet that there exists a
u € HN P, such that u € R(6, 3). Let x; and x, be distinct
points on R(e, g) and consider the convex hull A of the set
{u, x, xe}. (That 1is A 1s the smallest convex set containing
these three points.) A has an interilor relative to H since
if w € A and w is not on any of the three segments [xl, x2],
[u, le’ [u, X2]’ there exists a convex open set N containing
w and not intersecting any of the three segments, so
NNHcA. Then y (as an element of H) is contained in
[A] [Px] contrary to the assumption. Thus, HN P, © R(8, %)
and, therefore, HN P, = R(s, %-. The verification that
HNP =5 when 8 £ H 1s achieved by replacing R(8, %) by 8

throughout the preceding argument.

3.20 Definition. The ray R(6, x) 1s an extreme ray of
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the cone K 1f, whenever [u, v] <« K and (u, v) n R(8, x) # ¢
1t necessarily follows that [u, v] < R(8, x).

3.21 Lemma, If R(6, x) 1s an extreme ray of K then
(a) PX = [9, XJ
(b) [PX] = L(e’ x)

Proof: Certainly [6, xJ €K N (x - K) =P ILet y be

"
any element of P, ¥y #6. Then x = %(2y) + %(Q(x - y)) and
since 2y and 2(x - y) belong to K, x 1s the midpoint of a
segment in K. Because R(8, x) 1s an extreme ray, 2y € R(8, )
and 2(x - y) € R(8, x). Thus, y € R(8, x) and x - y € R(9, x).
It follows that y € R(8, x) n (x - R(8, x)). Since R(8, x) =
{z:2=px, p20}and x - R(8, x) ={z: 2 =x - Bx =

(L -B)x, p20}={z: 2z=o0x, a1}, R(8, x) n (x - R(8,x)) =
{z:2=Yx, 0sy s 1}

(6, x]. Since y was any element of

P.» P, c [8, x] and (a) is true. (b) follows trivially from
(a) since the linear extensilon of the segment [8, x] is the

line L(g, x).

3.22 Theorem. If x € Kq and R(8§, x) 1s an extreme ray
of K then the line L(6, x) 1s dense in X.
Proof: Follows immediately from Lemma 3.21 (b).

3.23 An example to show that the situation described in

Theorem 3.22 can occur. ILet X = R2 wlith the topology having

as a base the famlly of all open vertical strips of the form
f(xl, x2) ta < X3 < B}. It 1s easy to verify that in this
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topology R2 1s locally convex linear topological space with
pseudo-norm p(xl, x2) = | X, | determining its topology but
1s not a normable space since 1t falls to satlsfy the Tl-
separation axiom. It 1s also easy to see that the xl-axis is
dense In the space. ILet K denote the set of all points

(xl, x2) with x; 2 0 and x, 2 0. The non-negative x,-axls 1s
an extreme ray of K and the point (1, O) on this extreme ray
is a QI-point of K. We note that the cone K here 1s not
closed. For further details see the discussion of this

example in [3].

3.24 Theorem. Suppose K is closed and K U (-K) # X.

Then, if R(8, x) 1s an extreme ray of K, R(6, x) N K, = g -1.e.

q
R(e: X) c Kb'
Proof: By Lemma 3.21 (b), [P ] = L(g, x) =

R(8, x) U R(6, - x) c KU (-K). If x € Kq, by Theorem 3.22,

X=1(8, x) CK U (-K) =K U (-K) = KU (-K). Since obviously
K U (-K) ¢ X we have that K U (-K) = X contradicting our

assumption.

The majority of the preceding results demonstrate
properties which quasi-interior points have in common with
interior points. The following examples are included to

indicate some of the differences between these concepts.

3.25 An example of a cone K such that K° =K =d.

=1

~1

Let E be any uncountable set. Let S denote the ¢g-ring of all
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subsets of E. For each finite set F in E let m(F) denote the
number of points in F and for any subset A of E with more
than a finite number of points let m(A) = ». (E, S, m) 1s a
measure space. Let X be the space L(E, S, m) of all measur-
able functions £ on E such that | £ | is integrable over E.
Assign to each f in X the norm || £ || = fo | £ |. X is a non-
separable Banach space. Let K be the class of all functions
f in X such that £(x) 2 0 for all x in E. K 1s a closed cone

in X such that K - K = X, K n (-K) = {8}, K° =XK_ = ¢. ‘The

a
verifications of these statements together with other
properties of K and X may be found in [3].

For another example see [3, example 8.2].

3.26 An example of a cone K such that K° = g and K. # d.

Let X be the space L(E, M, m) where E is a set, M is the
family of m-measurable subsets ol E, and with m(E) < ». It
was shown in [2] that if X 1s not finite dimensional then the
cone K= {f : £ € X, £(t) 2 0 for t € E} has no interior. It
1s easily seen that the function f defined by f(t) = 1 for
all t € E 1s a QI-point of K since the simple functions are

dense in L and since if g(t) = g5

121 aiin(t) is any simple

function in L (where {E;} 1s any finite family of disjoint
sets in M and XEi 1s the characteristic function of Ei) then
1f vy = "X | a, | and h(t) = %g(t), f €h+Ksoh€ [P]
and, hence, g € [Pf]. Since all simple functions thus belong

to [Pf], [Pf] is dense in X and f € Kq.
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Note that Example 3.8 also shows a cone K with kK° ¢
yet Kq # ¢. For still another example see [3, example 8.5].

3.27 An gzgmglg Eﬁ.i line through a QI-point x of a

conehg_which intersects K only at x. ILet X = c¢c_, the spacze

O’

of all real sequences converglng to 0. If x = {gi] € X tren

) Su '
Il =518 |. Letk={x-= (€, + x €X, & =20 for
all i}. Define x = {1, %3 %3 cees %ﬁ, ...} and y =
-1)n ,
{-1, %3 -%3 cees i—%l—y ...}. It is easily seen that x € K_
~

and y £ K. Consider the line L(x, y). For any a > O
ay + (1 - a)x = {(-1)° % + (1 - a) %H}. For n odd,

g, ,1l-a @, 1l__ =2 + . n
-+ o < n T on = ol . Choosing n so that a > £Ya)

it follows that -2"a + n < 0. Thus, for any a > 0,

ay + (1 - a)x £ Kq and the only point of the ray R(x, y) in
Kq is x 1tself. Similarly, consldering even n with a < 0,
no point ay + (1 - a)x lies in Kq. Thus L(x, y) intersects

only at x.
Kq y

3.28 An example of a line L through a point y £ K and

point x € Kq such that the first point of K on L from y

through x 1s x 1itself and L~~R(x, y) © Kq' As in example

3.27, let X = s and K be the positive cone. Kq is the set

of elements with strictly positive coordinates. Let

1 1 1 1 ' 1
x =11, 5 I vees o e ds ¥ = (-1 -5 -%, ces =T }
1 - - - n
Consider ax + (1 - a)y = {%ﬁ._ (1 - a)} - {na é;n a)2 ]

If, for some a with a < 1, ax + (1 - a)y € K, then

n

na - (1 - a)2” > 0 for all n. This implies that 7o > ﬁ—

a
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n
for all n. But %— can be made arbltrarily large. Thus, the

ray R(x, y) contains no points of K other than x. If a > 1,

ax + (1 - a)y = {2¢ °F égn‘ 1)e” } and each coordinate 1s

positive. Thus LAyR(x, y) lies entirely in Kq.

3.25 An example of a line L which Intersects K in a

segment one end of which 1s a QI-point and the other a QB-

point. ILet X, K and x be as in examples 3.27 and 3.28. Let

[%-’ %J %E) so 0y in: -..}. Then ax + (l —a)y=

- - n
G+ Lg2dy - (tenn G 0B, 1ra =,

ban + (1 - a)2® = <bn + 27" 2 2(2® ~2n) =0 4f n=1, 2 and

'y=

> 0 if n > 2, Thus, the line L(x, y) contains the QB-point
-x +2y., If -1<as1, 4an + (1 - a)2” > 0 for all n. Thus
the segment (-x + 2y, x] K . If o > 1 then, since gﬁ'——ﬁh
0, 4G—ﬁ-+ (L -a)<O0fora sufficiently large n hence for ‘large
enough n, 'H + L;Eﬁ_—l < 0Oand ax + (1 - a)y £ K. Thus,
L(x, y) N K (-x + 2y, x]. Finally, if a < -1, then for

=1, §-+ ?; - a) 1 + 2<o so'ax + (1 - a)y £ K. Thus,

L(x, y) N K = E-x + 2y, x].

3.30 An example of a line L which intersects a cone K

in a segment with endpoints both of which are QI-points. Let

X = L0, 1], the Banach space of all Lebesque measurable

functions absolutely integrable over the interval [0, 1].
Iet K=({f : £ €X, £(t) 2 0 a.e.}. Then Kq = (f : £ €X,
£(t) > 0 a.e.]. Let £.t) = t7/2 and £,(t) = (1 - )2/2,

Certainly f,, f, € Kq. Consider L(fl, fe) =
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{afl + (1 - oc)f2 i -o<a< + e}, Clearly [fl, fEJ c k. If
a £ [0, 1] then af; + (1 - a)f, £ K. To see this ncte that
if, for exarple, o < O then g(t) = af (t) + (I - a)f,(t) =
atl/2 1 (1 - a)(1 - )2 ¢ 0 whenever ((1 - ti/t)Y/% >

(¢ - 1)/ -1.e. for all t < ag/(2a2 - 2a + 1), Thaus

L(fy, £,) NK = [£y, £,].

Only cones wilith vertex at 6 have been considered. Since
any convex cone with vertex u in X 1s the translate u + K of
a convex cone K wilth vertex 8, a ratural extension tc any

convex cone of the quasi-interior roint concept can be rade.

3.31 Definitlon. If K 1s a convex cone {(with vertex

8) define the set (y + K)q to be the set of all pcilnts

X € y + K such that [(y + K) N {x - K;] is dense 1n X.

(y + K)q is called the quasi-interior of y + K and each

x € (v + K)q is a QI-point of y + K. {Note that this
definition contains definition 3.1 asz the specilal case when

vy =6.)

3.32 Theorem. (v + K)q =y + Kq.

Proof: ILet z be any element in y + Kq. Then z =

Yy 4+u, u=2-y € Kq. Thus [Pu] is dense in X. However,
(y+K)n(z-K)=(vy+K)n(y+u-K)=y+ (KN (u-K))="
y + Pu and, since [Puj is dense in X, so 1z y + ;. Thus

[(y P ¥) n (z - K)] is dense in X, z € (y + K)q and

y + Kq c (y + K)q. To prove the inclusion in the oppcsite
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direction let z be any element of (y+nK)q. Then
[(y +X) N (z - K)] is dense in X. If u = 2 - y then P, =
KN (x-K)=-y+ ((y +K) n(z-K)) and [P ] 1s dense in

X. Thus u = 2z - y € Ky» 2 €y + Ky and (y + K)q cV + K.

4, Support and separation properties.

A hyperplane in X is a maximal proper closed linear sub-

space. It 1s easlily shown that a necessary and sufficient
condition that a set H be a hyperplane is that it be the null
space of a non-trivial continuous linear functional on X.

The hyperplane H = f'l[oj 1s said to separate two sets A and
B if x € A implies f(x) 2 O whlle x € B implies f(x) s O.

H = f'l[O] strictly separates A and B if £(x) > O for all

x € A while £(x) < O for all x € B. A hyperplane H = ffl[O]
supports a set A if f(x) 2 0 (or f(k) < 0) for all x € A and
HNA#J., x € A is called a support point of A if there is

a hyperplane H containing x and supporting A.

The well known Hahn-Banach theorem in 1ts geometrlic form
(c.f. [1]) states that if A is a non-empty open convex set
and M is a variety not meeting A then there exists a hyper-
plane H containing M and not meeting A. 1In particular, if K
is- a convex cone with K° # ¢ then every point x € K~K° is a
support point of K. Furthermore, 1f H supports K then
Hn K = @, and, consequently, every interior point of K is a
non-support point of K. The fact that 1if Kq # ¢ then every

point of Kq is a non-support point of K is demonstrated 1n
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Theorem 4.2 below. However, as an example on page 136 of [10]
shows, there can be points 1n Kb which are also non-sgsupport
points. Some rather restrictlve condltlons on X whilch are
sufficient to insure that the set of all non-support points
of K colncide with Kq are also given in [10]. The results
beginning with Theorum 4.4 are concerned with the probler of
supporting a cone with non-vold quasi-interior by a proper

linear subspace, not necessarily a hyperplane, but maximal in

a certain well-defined sense.

4.1 Theorem. Let K and K' be cones with non-void
quasi-interiors such that Kq N K'q = . Then if H 1is a hyper-
plane separating K and K', H strictly separates Kq and K'q.

Proof: Suppose H = f'l[o] separates K and K'. Suppose
Xx € HN K. Then, f(x) = 0. If y 1s any element of PXJ X -y
1s also an element of P, and f(x - y) = -f(y). If y £ H then
£(y) # 0 and f(x - y), f£(y) are opposite in sign. Both x - ¥
and y belong to K and, because f(x - y), £(y) are opposite in
sign, lie on opposite sides of H contradicting that H separates
K and K'. Thus x € H N K implies Px c H. But then [PX] C H
so, since H is a hyperplane, [PX] is not dense in X. Thus
H N Ky = @ and assuming that f£(x) 2 0 for all x € K, £(x) > 0
for all x € Ky Similarly f(x) < O for all x € K'q and H

strictly separateé Kq and K'q.

4.2 Theorem. If H 1s a supporting hyperplane for K

then H N Kq = @ -1.e. each QI-polnt is a non-support point.
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Proof: Let H be a supporting hyperplane for K. Then
H = f-l[O] and f(x) 2 0 for all x € K. Certainly § € H. If
HnNn K = {8} eertainly H N Ky=%. Ifx €HAK, X #8
then, by an argument analagous to that used in Theorem 4.1,

P, © H which implies that x £ Kq. Thus H N Kq = g.

4.3 Theorem. Suppose L # ¢ and C 1s a convex set
with non-void interior ¢° such that ¢° n Kq = . There exists
a hyperplane H separating C and K and strictly separating c®
and Kq.

Proof: Since C° and Kq are disjoint convex sets, by
[6, (8.8)] there exist complementary convex subsets Ay and
Ao Ap N Ay =@, Aj U A, = X with ¢° c &, and K, © Ap. Since
c® is open in X it follows from [6, (9.1)] that Ki N Ké is a
hyperplane H separating ¢® and Kq. Furthermore, this same
theorem shows that c®nH-= g and, by the proof of theorem
4.2, K, N H=g. Thus H strictly separates c® and Ky CNK
is a convex set. Assert that CN K c H. If C N K = @ this
is trivial. If C N K # @ there exists an x € C N K. Assume
without loss of generality that H = f_l[O] with f(Kq) > 0.
First assume that f(x) > O -1.e. x £ H and x is on the same
side of H as Kq. Since H 1s closed there 1s a convex nelgh-
borhood N about x such that £(N) > 0. Since x € C, N N c® £ d.
But this implies that c® contains points on the same side of
H as Kq contrary to the fact that H strictly separates c® apd

Ky Secondly assume that y € C N K and f£(y) < 0 -i.e. y and
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c® 1ie on the same side of H. Agaln there 1s a convex
neighborhood N of y such that £(N) < 0. By theorer 3.16,
since Kq # d, Kq is dense in K so, slnce y € K “here exist

polints of Kq in N contrary to the strict separation cf ¢° and

Kq. Thus, C N K € H and H separates C and K.

4.4 Theorem. Suppose K N (-K) = {o}, Ky # ¢ and

X, € Ky» X, # 6. Then there exists a subset H of X maxiral

with respect to the properties:
(1) H is a proper linear subspace of X,

(11) x_ € H,

o
(ii1) Hn Kq = .
Proof: Note first that K does not consist of a single

ray from @ for if 1t did we would have K = {ix_  : A 2 C}.

Since Kq # ¢ there exists a y € Kq, y # 6 hence y = ax_, o > 0.
But then X, = %y € Kq contrary to the assumption that

X, € K = K~K,. Suppose K = R(6, x ) U R(6, -x_) = L{6, x_).

Then -K = L(8, x,) and X N (-K) = K contrary to the assumpticn

that K 0 (-K) = {6}. Thus, K contains at least two independent
rays from # and X contains at least two distinct lines through

8 -i.e. X has dimension at least 2. Consider the line

L(6, x,) and the ray R(8, x_). Clearly L{8, x_ )NK = R{8, x )

q (r(8, x,) N Kq) u (R(e, -x ) N Kq) =d.

Thus L(6, xo) is a proper linear subspace of X containing x_

and L(8, X,) NK

with L{8, xj) N Ky = g. That is L(§, x ) satisfies (i, (i1)

and (111), and the family of of all subsets of X satisfying



(1), (11) and (i11) is ron-veld. Levw o be partlally ordered
by inclusion and let JC=:{Hd} be a maxirmal linearly ordered
subfamily of of. Iet H = Y H . Clearly H satisfies (1), (11)

and (11i) and is wmaxlmal with respect to satisfying these

properties.

4.5 Treoren. Iet K and H te as irn Theorem 4.4,

Define S, = H + K{ and 82 = H «‘qu Thern

1 1

(I)HNnS; =HNS, =8, N8, =4,

(I1) Bu 8, U s, = X,

(III)KcHusl

(zv) Ky © 8y

(V) 8, and 8, are symmetric with respect to H in
the sense that if X € Sl and y € H then there exists an
Xy € 82 with y = %xl + %xg.

Proof: II’yGHnsl=Hﬂ(H+Kq)theny=u+z€H
with z € Kq SO z=y -u € Kq N H corntradicting Theorem 44
(111). Thus H N 3, = 4. IfyGHﬂSE—tHn(H—Kq)then
y=u-2z € Hwltir 2z € Kq so z=1u -y € Kq N H, again con-
tradicting Theorem 4.4 (iii). Thus H N 55 = ¢. Suppose

y € Sl n 82. Since y € Sl =H+ K., Yy =u+ 2 where u € H,

q
z € Kq and since y € 32 = H - KqJ Yy =V - w where v € H,
WEK,., Thusu+2z=V-wsou=v - (w+ 2z). But v € H
and w, 2z € Kq imply u € H - Kq =S,. This u € HN S, contra-

dicting that H N 5, = ¢#. Thus (I) has been proved.

Suppose, contrary to (II) that there exists a y € X such
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that y FHU S, US,. Let H' =H+Ry ={u+ay:u €H a€R}
Then H' is a linear subspace of X properly containing H and,
because H 1s maximal with respect to (1), (11) and (iii) of
Theorem 4.4, H' N Kq #@. Let v € H' n Kq. Then v = ay + W
where a # 0 and w € H. If a > 0 let v' = év =y + éw. Since

v € Kq so 1s v!' € Kq. Iet z = -éw. Then z € Hand y =

zZ + V! € H + Kq = S1 contrary to the assumption. If a ¢ O
1 1 -
1 = ——— = - -
let v! = (-3)v ¥y + (-5)w. Then, since v € Kqs V' € Ky
Iet z = (-%)w. Then z € Hand y = 2z - v'! € H - Kq = 85,

another contradiction. Thus (II) holds.
If KZ£ HU S, then there exists a z € K N S,. Since
z €85, z=u -V where u € H and v € Kq. But then u =

z+ Vv €E€K+K cK (c.f. Theorem 3.14 (b)) contradicting

q a
that H n Kq = @. This proves (III).
(IV) 1is obvious since Kg =8 +K,cH+ K =35,
Let y be any element of H and let Xq be any element of

Sl’ Then Xy = U + v where u € H and v € Kq. Define Xy =

n
<<;
1
>
1
n
D%
1

(u+v)=(2y-u) -veH- Kq = 82. Clearly

%‘(xl + x5) =¥ so (V) holds and the theorem is proved.

4.6 Theorem. Let K, H and X, be as in Theorem 4.4,
If u € Hand P, =K N (u - K) then P, c H.

Proof: Suppose, contrary to the desired conclusion,
that there exists a point z € Ekr\/H. Then, if H' = H + Rz,
the maximality of H relative to (1), (11) and (iii) of

Theorem 4.4 implies that H' n L #@. Let v € H' n K,- Tren
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V =0z + wwhere w € H, a € Rand a # O (since v € H). Since
v and z belong to K (v € Kq cKand z € P, < K) we have that

the segment [v, z] =K. If v' =8v + (1 -B)zwithO0O< B s 1

and v" = %v' =V + il—ﬁ—élz then v = v" - il—é—élz €XKn (v'-K)=

P,n 80 P, c P _n and v € Kq. But then v!' = Bv" € Kq and

(v, z) € Kq. Since P, 1s symmetric about %3 z € P, implies
u-2z¢€P,. Alsou -z £ H since u € H and z £ H. Thus
u-2z€P ~H Let H' = {t +a(u - z) : t € Hand a € R}.
If w=¢t +a(u-z) € H thenw= (t +au) + (-a)z € H+ Rz =
H' and H' ¢ H'. If w € H' then w=u + az = (1 + a)u +

(=a)(u - z) € H" so H' c H" and H' = B". Thus, v € Kq N H",

vgHsov=a'(u-2)+w with w' € Hand a' # 0 in R.
Since u -~ z, v € K so is [u - z, v] ¢ K. If v' = B(u - z) +

(1 - B)v where 0 £ B < 1 then v" = i—%—Ev = i—@—ﬁ(u -z)+ v

and v = v" - T_%—E(u -z) €Kn (v" -K) =P,n. Thus v" and

hence v' belong to Kq and (u - z, v] c Kq. We know that

Vv =0az + w where w € Hand a € R with a # 0. Suppose first

that a > 0. Then since u, w € H, the point x = (i%ajw + (i%a)u

o]
1 + a)(u

This contradicts

belongs to H. Also x = (az + w) + ( -z) =

1
1l +a
g Le(u - z) € (u - 2, V)cK
1+a (1 + o)t * VIE B

that H N Kq = @. The theorem is proved.

4.7 Theorem. Let K, H, 8; and S, be as given in

1
Theorem 4.5,
() If » > O then A8, € 8; and A8, < 8,.

(b) S; + 8, €87, S, + 8, € 8,.
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(c) S, U {6} and S, U {8} are convex cones.

(d) HU S, and H U 8, are convex cones; S; U &, 1s

not convex,

(e) -8, = S;.
(£) H+ 8, €87, H+ 85 ¢ 8;.
(g) -8, €85, H-8; c38;.
(h) 8, - 8; €85, 8 - 85 © 8;.

Proof:

(2) If x € 8; then x = u + w where u € H and w € Ky

Then Ax = Au + Aw. Clearly Au € H and since for x > C,
K. €K, \w € K. Thus A > O Irplies Ax € H + K_ = S

q q a q 1
analagous argument verifies that XSQ c SQ it X > C.

An

(b) If %, y € S, then x = u + wand y = s + t where

u, s € Hand w, t € K. Clearly x +y = (u + 8) + (¢ + w) €

%

H + Kq = Sl'

(c) This follows immediately from (a) and (b).

Similarly for Sg.

(d) Let x € HU 8;. Thenx € Hor x € §;. I
A2 0and x € H, xx € H. If x € Sl and A > O then Ax € Sl'
If x € Sl and A = 0, \x = § € H. Trus, X € HU Sl and » 2 C
imply Ax € H U Sl' If x, y € Hthen x +y € H. If x, ¥y € Sl
then x + y € Sl’ If x € Hand y € Sl then y = u + v where

u€Hand v €K, S0 x+y=x+ (u+v) =(x+u)+veESs,.

In any case, if x, y € HU S1 then x + y € HU Sl then
X+y€€HU Slm Thus, H U S1 is a convex cone. Similarly
for HU 32' To prove that Sl 0] 82 is not convex we need only

exhibit two polnts u, v € 8; U S, such that [u, vl NH#ZJ.
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Let u € S) and x € H. Then Vv =2x - u € S, and x € (u,v) N H.
(e) Suppose x € -8,. Then -x € S, and -x = u - v

where u € H and v € Kq and X = -u + v € H + Kq = Sl' Thus

-82 c Sl' Now suppose x € Sl' Then x = u + v wlth u € H and

v € Ky S0 -X = (-u) - v €H -K_ = S, and x € -8,. Thus

q
S, € -8, and the equality holds.

(f) If x = u + v where u € H and v € S, then

1

v = u' + v! where u' € H and v' € Kq and, x =u + (ut + v') =
(u+u') +v!' €H+ Kq =8,. Thus, H+ S, c S;. Similarly
H+ S, cS,.

(g) This follows trivially from (e) and (f).

(h) This follows trivially from (b) and (f).

4,8 Theorem. Let K, H, S, and S, be as given in

Theorem 4.5. If y € K, and H, = H + Ry define HI =

q
{u+ay :u€H a>0}and H

{u+ay : u€H aco0}.
_ ot - + - .t - _
Then H1 = Hl U Hl UH, HnN H1 =HN H1 = Hl n Hl =g, H1 n Sl =
+ _ -
Hl’ and Hl n 82 = Hl'
Proof: These statements follow immedlately from the

definitions and the fact that \K K, 1f A > 0.

4.9 Theorem. Let K, H, 8; and 8, be as given in
Theorem 4.5. Suppose x € S,» ¥ € S, and L(x, y) =
{ax + (1 - a)y : o € R} is the line through x and y. If
@ <0, 0x+ (1l -a)y €8, and if a 21, ax + (1 - a)y € 8;.
In particular, if x € S, and [y, x) c S, then L(x, y) n S, =

{ax + (1L -a)y : a 21}, L(x, y) n S, = {ox + (L -a)y : a < 1}
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hence L(x, y) ¢ 8; U S, and L(x, y) N H = #.

Proof: ILet z = ax + (1 - a)y where a < 0. Since

X

u+vandy=u'-v' where u, u' € Hand v, v' € Kq,

z=a(u+v)+ (1 -a)(u' -v') =au + (1 -a)u' +av - (l-ayv'

Since @ < 0, 1 - a > 0 and =(1 - a) < 0. Thus av € —Kq and
-(1 - a)v' € -K, 80 av - (1 - a)v' € Ky and z € H Ky = S,
Let z =ax + (1 - a)y where a > 1. Then z =alu + v) +

(1 -a)(u' -v!') =au + (1 - a)u' +av - (1 - a)v'. Since

a>1l, 1 -a< 080 -{1l-a)>0andav, -(1 -a)v! € Ky
Thus, av - (1L - a)v' € K

q and z € H + Kq = Sl‘

a1 L (x,7Y)
a <0
€ 82

4,10 Theorem. Let X, H, S; and S, be as in Theorem
4,5, H is dense in X if and only if S; U S, has a void

interior.

Proof: By Theorem 4.5 (I, II), 8, U Sy, = X~sH. Thus,
x € H if and only if x £ (8; U 5,)°.

5. A ConJecture.

Throughout this section let K, H, Xy Sl and S, be as
given in Theorems 4.4 and 4.5. The following statement was
given by Fullerton. Because, to this date, the writer nas

not managed elther to prove 1ts validity or to find a
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counter-example, it will be labeled here as:

5.1 Conjecture. Either H 1s a hyperplane or H, Sq and

82 are dense in X.

Fullerton left the following sketch of a "proof."
Suppose x € X~~H. Let Hy = fu+ax : u €H a€ R} =H + Rx.

Then Hl is necessarily dense in X. If H 1s closed, clearly

H1 is closed, and being dense in X, H1 = X. Thus H is a
closed linear subspace of X of deficiency one and is thus a
hyperplane. Suppose H 1s not dense in X. Then H is a proper
linear subspace of X and is therefore contained in a hyper-
plane M. If H 1s properly contained in M, let x € M~vH.
Then Hl c M and cannot be dense in X contrary to the under-
lined statement above. Thus H = M and H is closed.

This "proof" 1s certalnly valid if the underlined state-
ment is true. It is the validity of the underlined statement

about which there is some question.

In keeping with the writer's philosophy concerning
technical reports as outlined in the introduction, the
remainder of this section is devoted to the several attempts
made, so far unsuccessfully, to prove the conjecture.
Certainly little, if any, of the material to follow will

appear in the paper which will evolve from this report.

5.2 Lemma. If x € X~~H and H,; = H + Rx then

Hanq;észf. If v € H N K, then H; = H + Rv.

q
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| Proof: Elther H, = X, in which case, trivially,
Hy N Kq # ¢, or H, 1s a proper linear subspace of X. Since
Hl properly contains H and since H 1s rmaxlral wlith rezgect tc
(1), (11) and (111) of Theorem 4.4, H; N Ky #g. If v.E€H
and v € H (clearly this is the case 1f v € H; N K_ since

Qq
HN Ky = ¥} we have v = u + ax with a # O for some u € H.
Then x = %(v - u) so, if y € Hi, ¥ =u' +a'x =u' +
A 1
a'%(v -u) = (u' - %—u) + %—v € H + Rv. Conversely, if

z=u'+ BV € H+ Rv then z =u' + B{u + ax) =

(u' + pu) + pax € H + Rx = H;. Thus Hy = H + Rv.

5.3 Lemma. If v € H N Kq and s € P then elther
s € Hl or there exists a y € Kq such that s + y € Hl'

Proof: If s € PV then s = v - z where s, 2z € K. Now
since K < Sl =H+X,, 2=u+7y where u €H and y € Kq’ Thus

aq
s=v-(u+y)sos+y=-u+vEH+Rv= Hy.

5.4 Assumption. If v € H N Kq then P c H;.

5.5 Proof of Conjecture 5.1 assuming 5.4. If ° c H

then [PV] C Hy. Since v € Kq, [PV] is dense in X hence H; 1s

dense in X. The underlined statement in the paragraph

following 5.1 1s thus verified and the conjecture 1s valid.
Thus, 1f 5.4 were valid the conjecture would be proved.
5.5 Lemma. If Kq € Hy then 5.4 ,1ds.

Proof: By 5.3, 8 € PV implies s € H1 or s +y € H1 for
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some y € Kq. If Kq c Hl then y =u + ov with u € H, a € R
and s +y € Hy implies s +y =8 + (u +.av) =u' + a'v. This

implies s = (u! - u) + (a' - a)v € Hy so P, < H;.

Thus, 1f it could be verified that Kq < Hy, the conjecture

would be proved.

Another approach to the problem uses the concept of

points linearly accessible from a set., According to Klee [6],

5.6 Definition. A point y € X 1s linearly accessible

from a set A € X 1f (y, xJ © A for some x € A, X # y. The
union of A with the set of all points linearly accessible
from A will be denoted by lin A. A subset Bc X 1s called

ubiquitous if 1in B = X.

The following results are to be found in [6] and are

numbered as they are there.

[6, (8.4)] If C is a convex set with non-empty interior and
C is ubiquitous then C = X.

[6, (8.9)] If C and D are complementary convex subsets of X
and M = 1in ¢ n 1in D then either M 1s a maximal variety or
M= X.

(e, (7.1)] Each maximal variety is elther closed or dense.

Now if we could show that H = 1in C N 1in D for comple-

mentary convex sets C and D (for example C = H U Sl’ D = Sz)
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then by [6, (8.9)] H is a maximal variety so by [6, (7.1)],

H 1s either closed or dense.

5.7 Lemma. He (lin S1) N (1in S,).

Proof: Let u be any element of H. Let v1 be any
element of Sl' Certainly vy # u. Defilne vy = 2u - vy Then
vy € 85 and vy # u. Consider [vy, u) = {Au + (1 - A)v, : 0 <
A < 1}. Clearly [vy, u) ¢ H + 8, © S, (Theorem 4.7 (f)).
Also [vy, u) = {du + (1 - A)vy : O s A <1} cH+ S, € 8.
Thus, u € (lin S;) n (lin'S,).

5.8 Lemma. HU S, clin §;.

Proof:  H c lin Sl by Lemma 5.7 and S, < 1lin Sl by

1
definition 5.6.

5.9 Lemma. A < B implies 1lin A c 1lin B.
Proof: If x € A and A c B then x € B « 1in B. Suppose
x € 1in A, x £ A. Then there exists a y € A ¢ B such that

(v, Xx) € A cB so x € 1in B.

5.10 Lemma. lin (H U S;) < 1in §,.

Proof: Suppose p € lin (H U Sl)' If p € HU S8, then,

1
by Lemma.5.8, p € 1in 8;. If p € HU S, then, because
p € lin (HU S,) there exists a y € H U S, such that

(b, yJe HU S;. Either y € Hor y € S, since H N 8, = .
Suppose y € H. Let v € (p, y). If v € H the entire line

through v and y 1s in H because H 18 a subspace. But this

contradicte that p ¢ H U Sl‘ Thus, v € Sl’ vV o=
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ay + (1 - a)p, 0<a <1l. Since v € S1» vV =u + w where

u € Hand w € Ky Thus, u + w = ay + (1 - a)p and (1 - a)p =

(u -ay) +w€H+ Kq = 8.
1 . ,

T - o O, p € Sl again contradicting that p £ H U Sl' Thus

y € H and, necessarily, y € Sl' Thus p € 1lin S1 and

But kSl c Sl for A > 0 so, since

lin (H U 8;) < lin S,.

5.11 Lemma. 1lin (HU 8;) = 1lin S;.

Proof: Since S; ¢ HU 8y, 1lin 8; < lin (H U S;) by

1’
Lemma 5.9. The result follows from Lemma 5.10.

5.12 Lemma. Iet M = 1in S, N 1lin 82. Then

1
(a) Hc M,
(b) either M = X, M is a hyperplane, or M
is a proper linear subspace dense in X.
Proof: H U S, 1s convex (Theorem 4.7 (d)), S, is convex
(Theorem 4.7 (c)), (HU 8;) NS, = ¢ (Theorem 4.5 (1)), and

(HUuS,)UsS, =X (Theorem 4.5 (II)). Thus HU S, and S, are

1

complementary convex sets. 1in 8; = lin (HU Sl) by Lemma 5.11.

Thus M = lin (H U S;) N lin S, is elther a maximal variety or
M = X. That Hc M is Lemma 5.7. Since H is a linear sub-
space, 8§ € Hso 6 € M and M 1s a subspace, hence if M # X,

M 1s a maximal proper linear subspace. By [6, (7.1)], if

M # X, M 1s either a hyperplane or M is dense in X.

5.13 Lemma. If M = X (where M = 1in 8; N 1lin S,) then

(2) X is infinite dimensional.
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(b) X = 1in 8; = 1in §; = 1in (H U 8,) =
lin (H U 8,),

(c) 8,° = 8,7 = {HUS)° = (HUS,® =g,

Proof: Suppose M = X = 1lin 8§, N 1lin Sy. Then lin 8, =

X = 1in §,. Since lin (H U S;) = 1in S, and 1in (H U §,) =
lin Sy, (b) follows. Thus M = X implies the sets S1s Sy,
HU Sl and H U 82 are all ublquitous. Sl 1s a convex proper
subset of X and 1s ublquitous. By a theorem of Klee
[6, (8.1)], this can happen if and only if X is infinite
dimensional so (a) holds. Finally, by [6, (8.4)], since
Sl’ 82, HuU Sl and H U 82 are ublquitous and yet proper sub-

sets of X, they must all have void interiors.

5.14 Lemma. If M =X (where M = 1in S; N 1lin S,) then
H 1Is not a hyperplane.

Proof: Assume H 1s a hyperplane. Then H 1s not dense
in X so, by Theorem 4.10,81 U S, has a non-void interior.
Because M = X, from Lemma 5.13 (c), SlO = 82o = (. This,
together with the fact that Sl and 82 are convex give that
Sl U 82 is polygonally connected. But this implies that
S, U S, = X~~H 1s connected -1.e. H does not separate X. By

a theorem of Klee, [7, (2.1)], H is not a hyperplane.

5.15 Lemma. Suppose H # M {where M = lin S; N 1lin SE>'
Then there exists a line L in X such that L n 8, # ¢,
LNS,#@Pand LNH=g (L.e. LeS; USs,).

Proof: If H# M, since Hc M (Lemma 5.12 (a)} there
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exists an x € M, x £ H. Since x € Hand X = H U S, U8y,
X € Sl or x € 82. Assume without loss of generality that

X € Sl' Since x € M = 1lin S1 N 1lin Sg, X € S, N 1lin 82.

1
Since x € 1lin S, and x £ S, (Sl N S, = ¢) there exists a
y € 8, such that [y, x) S,. It follows immediately from

Theorem 4.9 that L(x, y) < S, U 35,

5.16 ILemma. If H is dense in X so are S, and S,.
Proof: ILet x be any element of H. Then
x € HU 8, c lin (HU 8;) = 1in 8, ¢ S| so Hc 8. Thus,
H = X implies §I = X. Similarly for S,.

5.17 Lemma. The following statements are equivalent.
(a) M N Ky = g (where M = 1lin S; N lin S,).
(b) K, N 1in S, = 4.
(c) 8 N 1lin S, = 4.
Furthermore, 1f x € Sl N lin 82 then x = u + v where u € H
and v € Kq N lin S,.
Proof: Suppose x € Sl N lin Sg. Then, since x € Sl’
X =u + V where u € Hand v € Kq. Since x € 1lin 5, and
X ﬁ'Sg there exists a y € S, such that [y, x) c S,. Thus,
forany a, 0 sa < 1, ax + (1 - a)y =a(u + v) + (1 -a)y =
Uy = Vg where u, € H and v € Kq. It follows that av +
(1 -a)y = (ua - au) - v, € 8, and [y, v) € S,. Thus
v € Kq N 1lin S,. Then Kq N 1lin S, = @ implies S; N 1lin S, = @.
Since Kq c 84, clearly 8; N lin 8, = @ implies Kq N lin S, = g,
and (b) and (c) are equivalent. M N Ky =
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(11in S; N lin S,) N K, = (Kq N lin S4) N lin S, so {a) and

a
(b) are equivalent.

A third possible approach to the problem could make use
of the following Lemma whose proof can be found in [5, p. 19].

5.18 Lemma. A cone P such that P # @, P # X is a
half-space if and only if it has a non-void directional-
interior, Pd and if the union of the sets P and —Pd is the
entire space. If P is a half-space P N (-P) 1s a maximal

linear subspace.

In order to make use of Lemma 5.18, set H U S, = P.

Note that H U S, 1s a convex cone according to Theorem 4.7 (d)

7 °

We ask the following questions. 1) Is P4 non-empty? 2) Is
S, = -P4? If the answers to both 1) and 2) are yes then,
because (H U Sl) U S, = X we have P = H U S1 is a half-space.
Since -H = H and -S; = S, we have -P = HU S, so P n (-P) =
(HUSy)n (HUS,) =H and therefore H is a maximal linear

subspace 80 1s either dense or a hyperplane.

5.19 Lemma. ILet P=H U Sl'
(a) Py © Sq-

(b) If X, N 1in S, = ¢ then S, c Py.

q
Proof: If Py = ¢ trivially Py < S,. Thus suppose

P4 # @. Let x be any element of P4. Then, given any y € X

there exists a z € (x, y) N P such that [x, z] ¢ P. 1If

y‘E S, theny =u - v where u € H and v € Kq. For some
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a, 0 <a <1l, =z

d
either x € Hor x € 8;. If x € H then z =a(u - v) + (l-a)x

ay + (1 - a)x. Since F, c P =H U Sy

(au + (1 - a)x) -av € H - Kq = 5, contrary to the fact that
z € Pand PN S, = @. Thus, x € S,. Since x was any element
of Py, Py © S, and (a) is proved.

To prove (b) suppose that K N lin S, = ¢. Then by

a
Lemma 5.17, S; N lin 8, = ¢g. This means that if x € S, and
y € 82 then [y, x) ¢'82. Suppose that x is any.element of
Sy let y € X, y#x. If y€P=HU S, then [y, x] cpP
since, by Theorem 4.7 (d), P is convex. Then, clearly, there
exists a z € (x, y) N P such that [x, 2z € P. If y € P then,
because X = P U S5, ¥y € S,. But [y, x) & S, so there exists
a z € (y, X) with z £ S2 hence z € P, Since P is convex and

x, 2 € P, [X, 2] € P. Thus, x € Pd and because X was any

element of Sl’ Sl'c Pd'

5.20 Corollary. If Ky N 1in S, = ¢ then H 1s a
maximal linear subspace (and is therefore elther a hyperplane
or dense).

Proof: We saw in Lemma 5.19 that if Ky N lin S, = ¢
then Py = S, # . Since S; = -S, (Theorem 4.7 (e) the

remarks preceding Lemma 5.19 give the conclusion here.

5.21 Theorem. A necessary and sufficient condition
that H be maximal linear subspace is that Ky n lin 8, = #.

Proof: The sufficlency was stated in Corollary 5.20.
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Suppose that H i1s a maximal linear subspace. Then P = H U 84

is 2 half-space and by Lemma 5.18, Py # @ and X =P U (-Pd).
By ILemma 5.19, Pd c Sl so -Pd c -Sl = Sz' Since X =

d = Sll
Since Pd = Sl if x is any pcint in S1 and y is any point in

{ PU(-Pd)=PU82and820P=¢,-Pd=82andP

S, then there exists a z € (y, x) n P such that [z, x] < P.
Thus there exists no point y € S, such that [y, x) c S, and,
consequently, 8; N lin 8, = ¥. By Lemma 5.17, S, N lin 8, =
g if and only if Kq n'lin 82 = . The theorem is proved.

e Forcmtr e 5 e s 4 e

e Sl Cn R
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